

Welcome to verbose-version-info’s documentation!

Contents:

	verbose-version-info
	Features

	Contributors ✨

	Installation
	Stable release

	From sources

	Usage

	Inner workings
	verbose_version_info

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	History
	0.0.1 (2021-02-18)

Indices and tables

	Index

	Module Index

	Search Page

verbose-version-info

[image: License] [https://opensource.org/licenses/Apache-2.0]

[image: Actions Status] [https://github.com/s-weigand/verbose-version-info/actions]
[image: Documentation Status] [https://verbose-version-info.readthedocs.io/en/latest/?badge=latest]
[image: codecov] [https://codecov.io/gh/s-weigand/verbose-version-info]
[image: Documentation Coverage] [https://github.com/s-weigand/verbose-version-info]

[image: All Contributors]
[image: Code style Python: black] [https://github.com/psf/black]

Generate verbose version information for python packages

	Free software: Apache Software License 2.0

	Documentation: https://verbose-version-info.readthedocs.io.

Features

Implemented

	Basic version retrieval

	Customizable string for not found version

	Commit_id for pip install git+<url>

	Split off cli to an extra

	Detect pip install -e installation and get path

	commit id for pip install -e . if .git exists

	commit id for pip install . if .git exists

	Determine dist time for pip install . (needed for better commit_id)

	get commit id for pip install . if .git exists, for the closest commit at installation time

	use find_url_info in vv_info for tarball installation

	Add dist_mtime time to VerboseVersionInfo

	Add warning if repo of source install is dirty (git status -s != "")

TODO

	Use a Singleton class instead of dicts for settings

	Reset settings function (mostly notebook showoff)

	setting formatter: Mapping[str, format_function] (used for sha)

	extract minimal required versions (useful for CI tests, of the min version)

	export minimal requirements to file (pip or conda style)

	add conda support

	create github markdown summary

Contributors ✨

Thanks goes to these wonderful people (emoji key [https://allcontributors.org/docs/en/emoji-key]):

 	[image:]
Sebastian Weigand
💻

 Installation

Installation

Stable release

To install verbose-version-info, run this command in your terminal:

$ pip install verbose_version_info

This is the preferred method to install verbose-version-info, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for verbose-version-info can be downloaded from the Github repo [https://github.com/s-weigand/verbose-version-info].

You can either clone the public repository:

$ git clone git://github.com/s-weigand/verbose-version-info

Or download the tarball [https://github.com/s-weigand/verbose-version-info/tarball/main]:

$ curl -OJL https://github.com/s-weigand/verbose-version-info/tarball/main

Once you have a copy of the source, you can install it with:

$ python setup.py install

 Usage

Usage

To use verbose-version-info in a project:

import verbose_version_info

 Inner workings

Inner workings

This is the detailed documentation of the inner workings of verbose_version_info.

	verbose_version_info

	Top-level package for verbose-version-info.

 verbose_version_info

verbose_version_info

Top-level package for verbose-version-info.

Modules

	verbose_version_info.data_containers

	Module for data container classes.

	verbose_version_info.resource_finders

	Module containing function to look up resources.

	verbose_version_info.settings

	Module containing all settings related functionalities.

	verbose_version_info.utils

	Utility modules with convenience functions.

	verbose_version_info.vcs

	Module containing code for version control system retrieval.

	verbose_version_info.verbose_version_info

	Main module.

 data_containers

data_containers

Module for data container classes.

Classes

Summary

	VcsInfo

	Container for vcs information.

	VerboseVersionInfo

	Information container for verbose version information.

 VcsInfo

VcsInfo

	
class VcsInfo(vcs_name: str, commit_id: str)

	Container for vcs information.

Create new instance of VcsInfo(vcs_name, commit_id)

Attributes Summary

	commit_id

	Alias for field number 1

	vcs_name

	Alias for field number 0

Methods Summary

	count

	Return number of occurrences of value.

	index

	Return first index of value.

Methods Documentation

	
count(value, /)

	Return number of occurrences of value.

	
index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

 count

count

	
VcsInfo.count(value, /)

	Return number of occurrences of value.

 index

index

	
VcsInfo.index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

 VerboseVersionInfo

VerboseVersionInfo

	
class VerboseVersionInfo(release_version: str, dist_time: datetime, url: str = '', commit_id: str = '', vcs_name: str = '')

	Information container for verbose version information.

Create new instance of VerboseVersionInfo(release_version, dist_time, url, commit_id, vcs_name)

Attributes Summary

	commit_id

	Alias for field number 3

	dist_time

	Alias for field number 1

	release_version

	Alias for field number 0

	url

	Alias for field number 2

	vcs_name

	Alias for field number 4

Methods Summary

	count

	Return number of occurrences of value.

	index

	Return first index of value.

Methods Documentation

	
count(value, /)

	Return number of occurrences of value.

	
index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

 count

count

	
VerboseVersionInfo.count(value, /)

	Return number of occurrences of value.

 index

index

	
VerboseVersionInfo.index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

 resource_finders

resource_finders

Module containing function to look up resources.

Functions

Summary

	dist_info_mtime

	Modification time of the dist info, current time if editable installed.

	egg_link_lines

	Lines of an .egg-link file if it exists.

	file_uri_to_path

	Convert file uri to a path if the path exists.

	find_editable_install_basepath

	Find basepath of an as editable installed package.

	find_url_info

	Extract package information for packages installed from an url or locally.

	local_install_basepath

	Extract base installation path for packages installed from local resource.

 dist_info_mtime

dist_info_mtime

	
dist_info_mtime(distribution_name: str) → datetime

	Modification time of the dist info, current time if editable installed.

This should basically be the same as the installation time for
packages installed from source in a none editable mode.

	Parameters:

	distribution_name (str) – The name of the distribution package as a string.

	Returns:

	Time the dist-info was packaged or current time if not found.

	Return type:

	datetime

 egg_link_lines

egg_link_lines

	
egg_link_lines(distribution_name: str) → List[str] | None

	Lines of an .egg-link file if it exists.

This assumes that a file with <distribution_name>.egg-link exists
somewhere in the path (which is at least for pip the case).

	Parameters:

	distribution_name (str) – The name of the distribution package as a string.

	Returns:

	Lines read from <distribution_name>.egg-link with striped newline.

	Return type:

	Optional[List[str]]

See also

find_editable_install_basepath

 file_uri_to_path

file_uri_to_path

	
file_uri_to_path(uri: str) → Path | None

	Convert file uri to a path if the path exists.

Used to get the base path of local installations from source,
e.g. pip install . .

	Parameters:

	uri (str) – Uri to a file e.g. ‘file:///tmp/dist’

	Returns:

	Path of the file if it exists

	Return type:

	Path

 find_editable_install_basepath

find_editable_install_basepath

	
find_editable_install_basepath(distribution_name: str) → Path | None

	Find basepath of an as editable installed package.

	Parameters:

	distribution_name (str) – The name of the distribution package as a string.

	Returns:

	Path to the root of an as editable installed package.
E.g. pip install -e .

	Return type:

	Optional[Path]

See also

egg_link_lines

 find_url_info

find_url_info

	
find_url_info(distribution_name: str, dist_time: datetime | None = None) → VerboseVersionInfo | None

	Extract package information for packages installed from an url or locally.

If the packages was installed using an url ‘direct_url.json’
will be parsed and the information extracted.
If a vcs (e.g. git) was used, the used vcs and commit_id
will be retrieved as well.

	Parameters:

	
	distribution_name (str) – The name of the distribution package as a string.

	dist_time (datetime) – Datetime instance of when the distribution was created.

Examples

If the package was installed using git:
pip install git+https://github.com/s-weigand/git-install-test-distribution.git

>>> find_url_info("git-install-test-distribution", datetime(2021, 2, 28))
VcsInfo(
 release_version="0.0.2",
 dist_time=datetime(2021, 2, 28),
 url="https://github.com/s-weigand/git-install-test-distribution.git",
 commit_id="a7f7bf28dbe9bfceba1af8a259383e398a942ad0",
 vcs="git",
)

If the package was installed by an url to an archive on ‘2021-02-27’:
pip install https://github.com/s-weigand/git-install-test-distribution/archive/main.zip

>>> find_url_info("git-install-test-distribution")
VcsInfo(
 release_version="0.0.2",
 dist_time=datetime(2021, 2, 27),
 url="https://github.com/s-weigand/git-install-test-distribution/archive/main.zip",
 commit_id="",
 vcs="",
)

If the package was not installed from an url or locally:
pip install package-on-pypi

>>> find_url_info("package-on-pypi")
None

	Returns:

	
	VerboseVersionInfo
	If the package was installed from a url resource.

	None
	If the package was installed from as editable or PyPi.

	Return type:

	VerboseVersionInfo | None

 local_install_basepath

local_install_basepath

	
local_install_basepath(distribution_name: str, *, vv_info: VerboseVersionInfo | None = None) → Path | None

	Extract base installation path for packages installed from local resource.

	Parameters:

	
	distribution_name (str) – The name of the distribution package as a string.

	vv_info (Optional[VerboseVersionInfo]) – Verbose version info generated by find_url_info().

	Returns:

	Path to the root of a package which was installed from a local resource.

	Return type:

	Optional[Path]

See also

find_url_info, file_uri_to_path, find_editable_install_basepath

 settings

settings

Module containing all settings related functionalities.

 utils

utils

Utility modules with convenience functions.

Functions

Summary

	dist_files

	List of PackagePaths even if the package is broken.

	distribution

	Get the Distribution instance for the named package.

Classes

Summary

	NotFoundDistribution

	Distribution of package which couldn't be found.

 dist_files

dist_files

	
dist_files(distribution_name: str) → List[PackagePath]

	List of PackagePaths even if the package is broken.

This is a convenience function since Distribution.files
could be None.
I.e. if RECORD for dist-info or SOURCES.txt for egg-info.

See: importlib.metadata.Distribution.files

	Parameters:

	distribution_name (str) – The name of the package as a string.

	Returns:

	Paths of files used by the package.

	Return type:

	List[PackagePath]

 distribution

distribution

	
distribution(distribution_name: str) → Distribution

	Get the Distribution instance for the named package.

	Parameters:

	distribution_name (str) – The name of the package as a string.

	Returns:

	Distribution instance of the package

	Return type:

	Distribution

 NotFoundDistribution

NotFoundDistribution

	
class NotFoundDistribution

	Distribution of package which couldn’t be found.

This class is used not to repeat the try-except pattern over and
over again.
If a package isn’t found an instance of this class is returned by
get_distribution() and the parts of the API which are used by
verbose_version_info are kept intact for the way they are used.

See also

get_distribution

Attributes Summary

	entry_points

	

	files

	List of files in this distribution.

	metadata

	Return the parsed metadata for this Distribution.

	name

	Return the 'Name' metadata for the distribution package.

	requires

	List of generated requirements specified for this Distribution.

	version

	User set string if no version was found.

Methods Summary

	at

	Return a Distribution for the indicated metadata path

	discover

	Return an iterable of Distribution objects for all packages.

	from_name

	Return the Distribution for the given package name.

	locate_file

	Given a path to a file in this distribution, return a path to it.

	read_text

	Attempt to load metadata file given by the name.

Methods Documentation

	
static at(path)

	Return a Distribution for the indicated metadata path

	Parameters:

	path – a string or path-like object

	Returns:

	a concrete Distribution instance for the path

	
classmethod discover(**kwargs)

	Return an iterable of Distribution objects for all packages.

Pass a context or pass keyword arguments for constructing
a context.

	Context:

	A DistributionFinder.Context object.

	Returns:

	Iterable of Distribution objects for all packages.

	
classmethod from_name(name)

	Return the Distribution for the given package name.

	Parameters:

	name – The name of the distribution package to search for.

	Returns:

	The Distribution instance (or subclass thereof) for the named
package, if found.

	Raises:

	PackageNotFoundError – When the named package’s distribution
metadata cannot be found.

	
locate_file(path: PathLike | str) → PathLike

	Given a path to a file in this distribution, return a path to it.

Just added to satisfy mypy, since the superclass one is
an abstractmethod.

	Parameters:

	path (PathLike | str) – Path to a file.

	Returns:

	Just the initial path ensure to be type PathLike.

	Return type:

	PathLike

	
read_text(filename: str) → None

	Attempt to load metadata file given by the name.

Just added to satisfy mypy, since the superclass one is
an abstractmethod.

	Parameters:

	filename (str) – Name of a file in the distribution

	Return type:

	None

 at

at

	
static NotFoundDistribution.at(path)

	Return a Distribution for the indicated metadata path

	Parameters:

	path – a string or path-like object

	Returns:

	a concrete Distribution instance for the path

 discover

discover

	
classmethod NotFoundDistribution.discover(**kwargs)

	Return an iterable of Distribution objects for all packages.

Pass a context or pass keyword arguments for constructing
a context.

	Context:

	A DistributionFinder.Context object.

	Returns:

	Iterable of Distribution objects for all packages.

 from_name

from_name

	
classmethod NotFoundDistribution.from_name(name)

	Return the Distribution for the given package name.

	Parameters:

	name – The name of the distribution package to search for.

	Returns:

	The Distribution instance (or subclass thereof) for the named
package, if found.

	Raises:

	PackageNotFoundError – When the named package’s distribution
metadata cannot be found.

 locate_file

locate_file

	
NotFoundDistribution.locate_file(path: PathLike | str) → PathLike

	Given a path to a file in this distribution, return a path to it.

Just added to satisfy mypy, since the superclass one is
an abstractmethod.

	Parameters:

	path (PathLike | str) – Path to a file.

	Returns:

	Just the initial path ensure to be type PathLike.

	Return type:

	PathLike

 read_text

read_text

	
NotFoundDistribution.read_text(filename: str) → None

	Attempt to load metadata file given by the name.

Just added to satisfy mypy, since the superclass one is
an abstractmethod.

	Parameters:

	filename (str) – Name of a file in the distribution

	Return type:

	None

 vcs

vcs

Module containing code for version control system retrieval.

Functions

Summary

	add_vcs_commit_id_reader

	Add vcs commit_id reader function to the list of registered function.

	local_git_commit_id

	Get git commit_id of locally installed package.

	run_vcs_commit_id_command

	Inner function of commit_id retrieval functions.

Exceptions

Exception Summary

	UncommittedChangesWarning

	Warning thrown if a director under source control has uncommitted changes.

 add_vcs_commit_id_reader

add_vcs_commit_id_reader

	
add_vcs_commit_id_reader(func: Callable[[Path, datetime], VcsInfo | None]) → Callable[[Path, datetime], VcsInfo | None]

	Add vcs commit_id reader function to the list of registered function.

This is pretty much the most simple decorator possible,
there isn’t any sanity checking (e.g. functools function signature)
since this package doesn’t have a pluginsystem and the sanity check is done by mypy.

	Parameters:

	func (VcsCommitIdReader) – Function to be added

	Returns:

	Originally added function.

	Return type:

	VcsCommitIdReader

 local_git_commit_id

local_git_commit_id

	
local_git_commit_id(local_install_basepath: Path, dist_mtime: datetime) → VcsInfo | None

	Get git commit_id of locally installed package.

	Parameters:

	
	local_install_basepath (Path) – Basepath of the local installation.

	dist_mtime (datetime) – Time the packaged distribution was modified.
This is only important for none editable installations from source.

	Returns:

	(vcs_name, commit_id)

	Return type:

	Optional[VcsInfo]

See also

run_vcs_commit_id_command, verbose_version_info.resource_finders.dist_info_mtime

 run_vcs_commit_id_command

run_vcs_commit_id_command

	
run_vcs_commit_id_command(*, vcs_name: str, commit_id_command: List[str] | Tuple[str, ...], local_install_basepath: Path, need_to_exist_path_child: str = '.', check_dirty_command: List[str] | Tuple[str, ...] | None = None) → VcsInfo | None

	Inner function of commit_id retrieval functions.

	Parameters:

	
	vcs_name (str) – Name if the vcs, which will be used as part of the result.

	commit_id_command (Union[List[str], Tuple[str, ...]]) – Shell command to return the commit_id.
E.g. for git: ("git", "log", "--before", f"'{date_string}'", "-n", "1", "--pretty=format:%H",)

	local_install_basepath (Path) – Basepath of the local installation.

	need_to_exist_path_child (str) – Childitem that needs to exists inside of local_install_basepath.
E.g. for git: ".git". by default “.”

	check_dirty_command (Optional[Union[List[str], Tuple[str, ...]]]) – Command to be run for checking if a directory contains uncommitted changes.
E.g. for git: ``(“git”, “status”, “-s”)``by default None

	Returns:

	(vcs_name, commit_id)

	Return type:

	Optional[VcsInfo]

See also

get_local_git_commit_id

 UncommittedChangesWarning

UncommittedChangesWarning

	
exception UncommittedChangesWarning

	Warning thrown if a director under source control has uncommitted changes.

 verbose_version_info

verbose_version_info

Main module.

Functions

Summary

	release_version

	Retrieve the release version of a distribution.

	vv_info

	Verbose version information of an installed package.

 release_version

release_version

	
release_version(distribution_name: str) → str

	Retrieve the release version of a distribution.

	Parameters:

	distribution_name (str) – The name of the distribution package as a string.

	Returns:

	Version string of the distribution

	Return type:

	str

 vv_info

vv_info

	
vv_info(distribution_name: str) → VerboseVersionInfo

	Verbose version information of an installed package.

	Known limitations:
	
	Does not include uncommitted changes.

	
	Can’t determine vcs information for tarball installations.
	E.g. pip install https://github.com/s-weigand/git-install-test-distribution/archive/main.zip

	Parameters:

	distribution_name (str) – The name of the distribution package as a string.

	Returns:

	Verbose version information of the installed package,
as detailed as possible.

	Return type:

	VerboseVersionInfo

 Contributing

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/s-weigand/verbose-version-info/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

verbose-version-info could always use more documentation, whether as part of the
official verbose-version-info docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/s-weigand/verbose-version-info/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up verbose_version_info for local development.

	Fork the verbose-version-info repo on GitHub.

	Clone your fork locally:

$ git clone --recursive git@github.com:your_name_here/verbose_version_info.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv verbose_version_info
$ cd verbose-version-info/
$ pip install -e .

	install the pre-commit and pre-push hooks:

$ pre-commit install && pre-commit install -t pre-push

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.md.

	The pull request should work for Python 3.8, 3.9, 3.10 and 3.11, and for PyPy. Check
https://github.com/s-weigand/verbose-version-info/actions
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_verbose_version_info

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push --follow-tags

Travis will then deploy to PyPI if tests pass.

 History

History

0.0.1 (2021-02-18)

	First release on PyPI.

 Python Module Index

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 verbose_version_info	

 	
 	
 verbose_version_info.data_containers	

 	
 	
 verbose_version_info.resource_finders	

 	
 	
 verbose_version_info.settings	

 	
 	
 verbose_version_info.utils	

 	
 	
 verbose_version_info.vcs	

 	
 	
 verbose_version_info.verbose_version_info	

 Index

Index

 A
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | R
 | U
 | V

A

 	
 	add_vcs_commit_id_reader() (in module verbose_version_info.vcs)

 	
 	at() (NotFoundDistribution static method)

C

 	
 	count() (VcsInfo method)

 	(VerboseVersionInfo method)

D

 	
 	discover() (NotFoundDistribution class method)

 	dist_files() (in module verbose_version_info.utils)

 	
 	dist_info_mtime() (in module verbose_version_info.resource_finders)

 	distribution() (in module verbose_version_info.utils)

E

 	
 	egg_link_lines() (in module verbose_version_info.resource_finders)

F

 	
 	file_uri_to_path() (in module verbose_version_info.resource_finders)

 	find_editable_install_basepath() (in module verbose_version_info.resource_finders)

 	
 	find_url_info() (in module verbose_version_info.resource_finders)

 	from_name() (NotFoundDistribution class method)

I

 	
 	index() (VcsInfo method)

 	(VerboseVersionInfo method)

L

 	
 	local_git_commit_id() (in module verbose_version_info.vcs)

 	
 	local_install_basepath() (in module verbose_version_info.resource_finders)

 	locate_file() (NotFoundDistribution method)

M

 	
 	
 module

 	verbose_version_info

 	verbose_version_info.data_containers

 	verbose_version_info.resource_finders

 	verbose_version_info.settings

 	verbose_version_info.utils

 	verbose_version_info.vcs

 	verbose_version_info.verbose_version_info

N

 	
 	NotFoundDistribution (class in verbose_version_info.utils)

R

 	
 	read_text() (NotFoundDistribution method)

 	
 	release_version() (in module verbose_version_info.verbose_version_info)

 	run_vcs_commit_id_command() (in module verbose_version_info.vcs)

U

 	
 	UncommittedChangesWarning

V

 	
 	VcsInfo (class in verbose_version_info.data_containers)

 	
 verbose_version_info

 	module

 	
 verbose_version_info.data_containers

 	module

 	
 verbose_version_info.resource_finders

 	module

 	
 verbose_version_info.settings

 	module

 	
 	
 verbose_version_info.utils

 	module

 	
 verbose_version_info.vcs

 	module

 	
 verbose_version_info.verbose_version_info

 	module

 	VerboseVersionInfo (class in verbose_version_info.data_containers)

 	vv_info() (in module verbose_version_info.verbose_version_info)

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to verbose-version-info’s documentation!

 		
 verbose-version-info

 		
 Features

 		
 Contributors ✨

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Inner workings

 		
 verbose_version_info

 		
 data_containers

 		
 resource_finders

 		
 settings

 		
 utils

 		
 vcs

 		
 verbose_version_info

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
